Automatic Evaluation of Machine Translation Based on Rate of Accomplishment of Sub-Goals
نویسندگان
چکیده
The quality of a sentence translated by a machine translation (MT) system is difficult to evaluate. We propose a method for automatically evaluating the quality of each translation. In general, when translating a given sentence, one or more conditions should be satisfied to maintain a high translation quality. In EnglishJapanese translation, for example, prepositions and infinitives must be appropriately translated. We show several procedures that enable evaluating the quality of a translated sentence more appropriately than using conventional methods. The first procedure is constructing a test set where the conditions are assigned to each test-set sentence in the form of yes/no questions. The second procedure is developing a system that determines an answer to each question. The third procedure is combining a measure based on the questions and conventional measures. We also present a method for automatically generating sub-goals in the form of yes/no questions and estimating the rate of accomplishment of the sub-goals. Promising results are shown.
منابع مشابه
The Correlation of Machine Translation Evaluation Metrics with Human Judgement on Persian Language
Machine Translation Evaluation Metrics (MTEMs) are the central core of Machine Translation (MT) engines as they are developed based on frequent evaluation. Although MTEMs are widespread today, their validity and quality for many languages is still under question. The aim of this research study was to examine the validity and assess the quality of MTEMs from Lexical Similarity set on machine tra...
متن کاملA new model for persian multi-part words edition based on statistical machine translation
Multi-part words in English language are hyphenated and hyphen is used to separate different parts. Persian language consists of multi-part words as well. Based on Persian morphology, half-space character is needed to separate parts of multi-part words where in many cases people incorrectly use space character instead of half-space character. This common incorrectly use of space leads to some s...
متن کاملError assessment in man-machine systems using the CREAM method and human-in-the-loop fault tree analysis
Background and Objectives: Despite contribution to catastrophic accidents, human errors have been generally ignored in the design of human-machine (HM) systems and the determination of the level of automation (LOA). This paper aims to develop a method to estimate the level of automation in the early stage of the design phase considering both human and machine performance. Methods: A quantita...
متن کاملA Comparative Study of English-Persian Translation of Neural Google Translation
Many studies abroad have focused on neural machine translation and almost all concluded that this method was much closer to humanistic translation than machine translation. Therefore, this paper aimed at investigating whether neural machine translation was more acceptable in English-Persian translation in comparison with machine translation. Hence, two types of text were chosen to be translated...
متن کاملA Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation
Abstract Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007